

Comparitive physiology -> study of how different species have solved problems of life how develop new Ings + medical procedures Before you go on: A question--difference b/w anatomy " physiology -name the method that walld be used: · listening to heart murmur ascultation · studying microscopic structure of the liver nepection microscopically examining liver for signs of hepatitis . Uarning the Blood vessels of a cadaver dissection . performing a breat self-exam paratation 1.3 Scientific Method Francis Bacon + René Descartes = philosophers ~ La outlined systematic way of thinking / scientific method Credited on putting science on the path to modernity Scientific thought La habits of creativity observation, logical thinking, analysis of conclusion, Inductive method making numerous observations until you make a generalization or prediction * Anatomy is the result of the inductive method We can haver prove a claim beyond all possible retutation we an consider a statement proven beyond reasonable doubt through reliable methods of observation, tested and confirmed repeatedly, and not failsified.

hypothetico-deductive method - asks a question, forms hypothesis, specify what could prove it wrong hypothesis operated in cycles of conjecture and disproof until one is found that is supported by evidence. Experimental Design Le Sample Size (bigger = better) # of subjects used in a study * an adequate sample size controls for chance of individual variations controls -> allows for comparison treatment group -> group getting treated on withou group like treatment group, sans treatment psychosomatic effects -> effects of the subject's state of mina that can have undesireable effect on results place bo -> given to control group to account for / experimenter bras = interpretation of Jata affected by Jouble- blind method = person reporting nor control groups know if they're control or treatment groups. Statistical festing - statements of probability of how confident conclusion is effective T-test, chi square test, analysij of Variance peer-review-critical evaluation by experts in that

Cells = basic unit of life ytology = study of cells torganelles moleule = two or more atoms macromoleule = protein, Fat, DNA, carbohydrates reductionism = view that you can understand large thing by studying its smaller parts (Aristotle) Holism->comprementary theory that thing is more than the sum of it parts Anatomical variation common structure = 70% or more of people Before YOU GO DN 12 Heirarchy of human organization 13. How are gissues relevant to definition of an organ? 14. Why is reductionism necessary but not sufficient point of view? 1.6 Human Function 8 characteristics of life: organization metabolism take in things from environment reproduction development differentiation + growth evolution responsiveness i movement excitability * physiological variation differs with age, sex, weight, diet, physical activity, genetics, environment

negative feedback -> process of activating mechanisms Junamic Equillibrium tendency to maintain memal vaso constriction -> meant to hold onto heat vaso dialation -> meant to release heat receptor -> integrating center -> effector Senseony organ brain muscle/organ positive feedback - self amplifying (child birth) blood clotting, protein digestion, generation of nerve signals gradient = différence in chemical concentration physical pressure, temp, éléctrical charge mores from nigher to lower concentration "down gradient" going up concentration gradient spend energy 1.7 the Language of Medicine Jerminological Anatomica = international names, whited eponyms = names coined from names of people prefix root suffix under salium blood disorder

table 1.1		
singular ending	plural enc	ling
- a	- a P,	O a villa - 3 a villar
- PIN	- ina.	lumen - lumina
$-\ell \chi$	-icld	wrtex -s cortices
~13	- 62	diagnosis -diagnoses
—i S	- ides	epididymis - epididymides
	-100	appendix -> appendices
$\sim \gamma \gamma \alpha$	- MUJU - M	annula - annalia
Lum	- <i>A</i>	Septim -> septa
- U S	-era	VISCUS - VISCERA
- US	<u> </u>	VILLA -> VILLA
- NS	- ora	CORPUS -> Corpora
	- ges	phatan x -> phatonges
- Y	145	ording - ording
~	- 9(0)	Caryes

memory tricks		V -> and serviced to
a sal a	ageec	ges ware here
en 🤊 ina	pen ina pen	y⇒ies normal ending
ex -> icls	ices ex bf	yx ~ yces like regular endinz pxt
is → es	ingles > españos	ides? with a y
ma -mata	ma = motha	
0n → a	on a table	
um->a	when in doubt.	· A
us → í	united states is	individualistic
us -> era	us is an ero	
us -> ora	us is an ai	nr or

PICTURES & DIAGRAMS

in large arteries near the heart. They transmit nerve signals to the brainstem, where we have a *cardiac center* that regulates the heart rate. The cardiac center responds by transmitting nerve signals to the heart, which speed it up. The faster heart rate quickly raises the blood pressure and restores normal homeostasis. In elderly people, this feedback loop is sometimes insufficiently re-

30 sponsive, and they may feel dizzy as they rise from a reclining

FIGURE 1.8 Homeostatic Compensation for a Postural Change in Blood Pressure.

Baroreceptors send signals

to cardiac center of brainstem

33

ATLAS A General Orientation to Human Anatomy

31

FIGURE A.4 The Four Quadrants and Nine Regions of the Abdomen. (a) External division into four quadrants. (b) External division into nine regions.

In what quadrant would the pain of appendicitis usually be felt?

(a) Abdominopelvic quadrants

(b) Abdominopelvic regions

 $^{1}sagitta = arrow$ $^{2}para = next to$

FIGURE A.1 Anatomical Position and the Three Primary Anatomical Planes. 51 of 1233 Graw-Hill Education SE

(b) Frontal section

(a) Sagittal section

(c) Transverse section

FIGURE A.2 Body Sections Cut Along the Three Primary Anatomical Planes. (a) Sagittal section of the pelvic region. (b) Frontal section of the thoracic region. (c) Transverse section of the head at the level of the eyes.

TABLE A.1	Directional Terms in Human Anatomy	
Term	Meaning	Examples of Usage
Ventral	Toward the front* or belly	The aorta is ventral to the vertebral column.
Dorsal	Toward the back or spine	The vertebral column is dorsal to the aorta.
Anterior	Toward the ventral side*	The sternum is anterior to the heart.
Posterior	Toward the dorsal side*	The esophagus is posterior to the trachea.
Cephalic	Toward the head or superior end	The brain develops from the cephalic end of the neural tube.
Rostral	Toward the forehead or nose	The forebrain is rostral to the brainstem.
Caudal	Toward the tail or inferior end	The spinal cord is caudal to the brain.
Superior	Above	The heart is superior to the diaphragm.
Inferior	Below	The liver is inferior to the diaphragm.
Medial	Toward the median plane	The heart is medial to the lungs.
Lateral	Away from the median plane	The eyes are lateral to the nose.
Proximal	Closer to the point of attachment or origin	The elbow is proximal to the wrist.
Distal	Farther from the point of attachment or origin	The fingernails are at the distal ends of the fingers.
lpsilateral	On the same side of the body (right or left)	The liver is ipsilateral to the appendix.
Contralateral	On opposite sides of the body (right and left)	The spleen is contralateral to the liver.
Superficial	Closer to the body surface	The skin is superficial to the muscles.
Deep	Farther from the body surface	The bones are deep to the muscles.

*In humans only; definition differs for other animals.

TABLE 2.2 Major Electrolytes and the lons Released by their Dissociation

Electrolyte		Cations and Anions
Calcium chloride (CaCl ₂)	\longrightarrow	$Ca^{2+} + 2 Cl^{-}$
Disodium phosphate (Na ₂ HPO ₄)	\rightarrow	2 Na ⁺ + HPO ₄ ²⁻
Magnesium chloride (MgCl ₂)		$Mg^{2+} + 2 Cl^{-}$
Potassium chloride (KCI)	\rightarrow	K ⁺ + CI ⁻
Sodium bicarbonate (NaHCO ₃)		Na ⁺ + HCO ₃ ⁻
Sodium chloride (NaCl)		Na ⁺ + Cl ⁻

P 42 - 54 Jons, electrolytes and free Radicals Chapter 2 p55 - 73 tab (e 2.1 (p41)) p44 - 45 w TABLE 21 Elements of the Human Body Name and Symbol Percentage of Body Weight Name and Symbol Percentage of Body Weight Major Elements (Total 98.5%) Oxygen (O) 65.0 Nitrogen (N) 3.0

	Oxygen (O)	65.0	Nitrogen (N)	3.0	
	Carbon (C)	18.0	Calcium (Ca)	1.5	
	Hydrogen (H)	10.0	Phosphorus (P)	1.0	
	Lesser Elements (Total 0.8%)	l	I		
_	Sulfur (S)	0.25	Chlorine (Cl)	0.15	
	Potassium (K)	0.20	Magnesium (Mg)	0.05	
	Sodium (Na)	0.15	Iron (Fe)	0.006	
	Trace Elements (Total 0.7%) (N	ames and symbols only)	I		
	Chromium (Cr)	Fluorine (F)	Molybdenum (Mo)	Tin (Sn)	
	Cobalt (Co)	lodine (I)	Selenium (Se)	Vanadium (V)	
	Copper (Cu)	Manganese (Mn)	Silicon (Si)	Zinc (Zn)	

element = simplest form of matter to have unique chemical properties made of proton, electrons, and neutron. identified by # of protons (atomic number) 91 naturally occuring elements, 24 play normal physiological roles in humans. Lother elements w/o natural physiological roles can contaminate the body and/or disrupt physiological processes mineral = inorganic elements extracted from soil by plants Ahert are passed up the food chain to humans + other animals. L= 4 % of human body weight, mainly Ca & P, the rest Cl, Mg, K, Na, S. enable enzymes to function. Bones r teeth = calcium, phosphonus?, magnosium, flouride, (phosphate) Sulfate ions

physical half-life = time it takes for a radioactive isotope to decay 50% of its atoms to a more stable isotope.
biological half-life=time it takes for half to disappear from
Jons, electrolytes, and free Radicals
Ions = charged particles w) unequal amount of protons and
anion = negative charge - gains electron * charge of ion = cation = positive charge - loses electron valence
Electrolytes = substances that conce in water (acids, bases, salts).
La important for electrical conduction/effects, enemical reactivity, Osmotic effects (influence on water content T distribution).
essential for nerve and muscle function, one of the most important considerations in putient care
Free Radical = unstable, highly reactive chemical particles w/ an odd number of electrons
- produced by: some normal metabolic reactions (ATP-producing oxidation reactions in mitochondria, or reaction in white blood cerls to kill bacteria)
- chemicals (nitrites - preservatives used in wine, meat, etc)
* Short-lived but combine quickly with other molecules (DNA fats, proteins) Swhatever they combine with is converted into a free radical -> chain reaction of molecular destruction
Neart tissue
antioxidant= chemical that neutralizes free radicals

Molecules + Chemical Bonds conjugated = covalently
molecules = two or more atoms
compound = molecules composed of two or more elements
around one molecules, but not the other way
molecular weight = sum of the atomic weights
jonic bond = electron transfer * weak and dissociate easily in water
covalent bond = Share electrons * strongest bonding
nonpolar = no partial charge = polar = partial charge region present
hydrogen bond = attraction to regions of polar was unt molecules Chydrogen side of one to oxygen of another
Worter and Mixtures
not chemically empired that are physically dended but
Watter = 50-70% of body weight,
most mixtures in our bodies are chemically or physically suspended in worter
ordhesion = tendency for one substance to cling to another
cohesion = tendency for molecules of the same substance to cling to each other
water is thormally Stable + chemical readive
* basic unit of heat = calorie 1 cal = heat needed to raise temp of 1g Hzb 1°C

Acids, Bases, pH acid = donates H+ ion (has H+) base = accepts H+ ion (has OH-) * amonium (NH3) is a base pure water is neutral (pH7) pt 0-6.9 = acidi (= less pt = more H+ ions pH 7.1 - 14 = basicbuffers = chemical solutions that resist changes in pH Energy Work energy is the capacity to do work work = to move something potential energy = energy contained in an object because of its position or internal state (not doing work) Linetic energy = energy in motion, energy doing work chemical energy = potential energy stored in molecular bonds. heat is kinetic energy of molecular motion electrical energy has both kinetic +potential forms electrical current charged battery Free energy = potential energy stored to do useful work

tactors that affect rate of chemical reactions: 11 - concentration 11 - temperature 11 - enzyme activity (catalysts) metabolism, oxidation, reduction all chemical reactions in body = <u>metabolism</u> catabolism = energy releasing decomposition reactions anabolism = energy absorbing synthesis reactions 1 Landogonic driven by the energy that catabolism releases Oxidation = any chemical reaction that gives up electrons L' whatever molecule takes electron = oxidizing agent molecule that gives up electron = oxidized oftenoxygen is involved as electron acceptor reduction - a chemical reaction where molecule gains electron and opins energy Lowhen molecule gains electron, it is reduced, molecule that donates electron = reducing agent redox reactions -> electrons are often transferred in the form of hydrogen atoms Ae^- + $B \rightarrow A$ + Be^- High-energy Low-energy Low-energy High-energy oxidized oxidized reduced reduced state state state

molecule Ae is in took electron, reduced state because Oxidizing It has energy Ae⁻ Be В +А +agend High-energy Low-energy High-energy and electron. Low-energy reduced oxidized oxidized reduced It gave to B state state state state why is Hereducing agent " Oxidizing agentic B the oxidizing agent is reduced. the reducing agent is oxidred. took electron and 3 to be reduced is to gain energy and electron, so B gained A's relectron and energy. This would make be the reducing agent because it gave B its energy and electron. energy be oxidized is to lose an electron and energy nee B took Ae 's electron and energy, B is the oxidizing agent gave up its electron + energy, so it ends up Oxidaly gains energy + electron, so it ends up reduced. VД TABLE 2.5 Energy-Transfer Reactions in the Human Body Exergonic Reactions in which there is a net release of energy. The products have less total free energy than the reactants did. Reactions Oxidation An exergonic reaction in which electrons are removed from a reactant. Electrons may be removed one or two at a time and may be removed in the form of hydrogen atoms (H or H₂). The product is then said to be oxidized. Decomposition A reaction such as digestion and cell respiration, in which larger molecules are broken down into smaller ones. Catabolism The sum of all decomposition reactions in the body. Endergonic Reactions in which there is a net input of energy. The products have more total free energy than the reactants did. Reactions Reduction An endergonic reaction in which electrons are donated to a reactant. The product is then said to be reduced. Synthesis A reaction such as protein and glycogen synthesis, in which two or more smaller molecules are combined into a larger one. Anabolism The sum of all synthesis reactions in the body. **BEFORE YOU GO ON**

Answer the following questions to test your understanding of the preceding section:

12. Define energy. Distinguish potential energy from kinetic energy.

13. Define metabolism, catabolism, and anabolism.

14. What does oxidation mean? What does reduction mean? Which of them is endergonic and which is exergonic?

Na + Cl-

15. When sodium chloride forms, which element—sodium or chlorine—is oxidized? Which one is reduced?

Organic Compounds
organic chemistry - the study of compounds of carbons
Large organic compounds (macro mole cules)
2. Nucleic Acids * Carbon has 4 valence 3. Carbonydrates electrons 4. Proteins
carbon backbones = 10ng chains, branches, or rings of carbons covalently bonded to each other
Letermine many of the chemical properties of an progenic molecules
ex methyl, amino, phosphate, carboxyl group
monomers = subunits of polymers (amino acid) polymer = macromolecule (protein)
polymer 2 ation - the oining of monomers to form a polymer - formed by denyaration synthesis (condensation)
From another, bonds monomers, forms water as by product
hydrolysis - breaking up water to break up polymers into monomers.
Carbohydrate = hydrophillic macromolecule, C, H2NON
monosaccharide = carb monomer -glucose, fuctosi, gulatose (CH2O)N disaccharide · carb dimer L, rNA + DNA Sucross, lactosi, maltose
Oligosaccharide = short (10-20) polysaccharide = long (hain of carb monomens
<u>glywgen</u> = energy storage, liver maintains glywore Starch = plant energy storage, only digistable polysaceharide cellulofi = plant cell wall structure, dietany fiber

metabolic pathway - a chain of reactions, with each step usually catalyzed by an enzyme A B B C P enzymes reactant end product > enzymes intermediates nucleofiles - monomer of nucleic acids 1. Nitrogenous base (double ringed carbon) 2. monosacehanide 3. one or more phosphate grapp ex. ATP > body's most important energy -transfer malerice phosphorylation - switch that turns metabolic pathways on/ Loff Lactuated by enzymes called kinases. much of energy from ATP synthesis 15 glucose ovidation glyvolysis produces pyruvate and net gain of two ATPS. Anaerobic Frmentation converts punuvate to lactate and permits glyuolysis to continue producing ATP W/O Oz. Aerobic respiration makes much more ATP but requires oz. GUANOSM triphospherte ((iTP) L'abnates phospherte to ADP 60 yield ASP cyclic ATP-atp w/only one phosphonte, acts as messinger to activate metabolic effects w/ in cen. nucleic acids-polymers of nucleofiles. DNA constitutes genes, instructions for protein synthesis KNA=makes protein

Tables · Pictures

PART ONE Organization of the Body

46

TABLE 2.3 Types of Chemical		emical Bonds	
Bond Type		Definition and Remarks	
Ionic Bond		Relatively weak attraction between an anion and a cation. Easily disrupted in water, as when salt dissolves.	
Covalent Bond		Sharing of one or more pairs of electrons between nuclei.	
Single covalent		Sharing of one electron pair.	
Double covalent		Sharing of two electron pairs. Often occurs between carbon atoms, between carbon and oxygen, and between carbon and nitrogen.	
Nonpolar covale	ent	Covalent bond in which electrons are equally attracted to both nuclei. May be single or double. Strongest type of chemical bond.	
Polar covalent		Covalent bond in which electrons are more attracted to one nucleus than to the other, resulting in slightly positive and negative regions in one molecule. May be single or double.	
Hydrogen Bond		Weak attraction between polarized molecules or between polarized regions of the same molecule. Important in the three-dimensional folding and coiling of large molecules. Easily disrupted by temperature and pH changes.	
Van der Waals Force		Weak, brief attraction due to random disturbances in the electron clouds of adjacent atoms. Weakest of all bonds individually, but can have strong effects collectively.	

TABLE 2.4 Types of Mixtures			
	Solution	Colloid	Suspension
Particle size	<1 nm	1–100 nm	>100 nm
Appearance	Clear	Often cloudy	Cloudy-opaque
Will particles settle out?	No	No	Yes
Will particles pass through a selectively permeable membrane?	Yes	No	No
Examples	Glucose in blood O_2 in water Saline solutions Sugar in coffee	Proteins in blood Intracellular fluid Milk protein Gelatin	Blood cells Cornstarch in water Fats in blood Kaopectate

FIGURE 2.11 The pH Scale and Approximate pH of Some Familiar Household Substances. The pH is shown within the colored bar. H⁺ molarity increases 10-fold for every step down the scale.

				and the second			Service .	
	•	-	2 E	En	OF	av	Tra	n
- 1					eı	uv-	• I I G	

Energy-fransier Reactions in the Human bo	Energy-	Transfer	Reactions	in the	Human	Boo
---	---------	----------	-----------	--------	-------	-----

the second strength in the second	
Exergonic Reactions	Reactions in which there is a net release of energy. The products have less total free energy than the reactants did.
Oxidation	An exergonic reaction in which electrons are removed from a reactant. Electrons may be removed one or two at a time and may be removed in the form of hydrogen atoms (H or H_2). The product is then said to be oxidized.
Decomposition	A reaction such as digestion and cell respiration, in which larger molecules are broken down into smaller ones.
Catabolism	The sum of all decomposition reactions in the body.
Endergonic Reactions	Reactions in which there is a net input of energy. The products have more total free energy than the reactants did.
Reduction	An endergonic reaction in which electrons are donated to a reactant. The product is then said to be reduced.
Synthesis	A reaction such as protein and glycogen synthesis, in which two or more smaller molecules are combined into a larger one.
Anabolism	The sum of all synthesis reactions in the body.

77 of 1233

TABLE 2.6	Carbohydrate Functions		
Туре	Function		
Monosaccharides			
Glucose	Blood sugar—energy source for most cells		
Galactose	Converted to glucose and metabolized		
Fructose	Fruit sugar—converted to glucose and metabolized		
Disaccharides			
Sucrose	Cane sugar—digested to glucose and fructose		
Lactose	Milk sugar—digested to glucose and galactose; important in infant nutrition		
Maltose	Malt sugar—product of starch digestion, further digested to glucose		
Polysaccharides			
Cellulose	Structural polysaccharide of plants; dietary fiber		
Starch	Energy storage in plant cells; energy source in human diet		
Glycogen	Energy storage in animal cells (liver, muscle, brain, uterus, vagina)		
Conjugated Carbohydrates			
Glycoprotein	Component of the cell surface coat and mucus, among other roles		
Glycolipid	Component of the cell surface coat		
Proteoglycan	Cell adhesion; lubrication; supportive filler of some tissues and organs		

every oxygen. Lipids are less oxidized than carbohydrates, and thus have more calories per gram. Beyond these criteria, it is difficult to generalize about lipids; they are much more variable in structure than the other macromolecules we are considering. We consider here the five primary types of lipids in humans—*fatty acids, tri-glycerides, phospholipids, eicosanoids,* and *steroids* (table 2.7).

20 moiet = half

TABLE 2.7	Lipid Functions
Туре	Function
Bile acids	Steroids that aid in fat digestion and nutrient absorption
Cholesterol	Component of cell membranes; precursor of other steroids
Eicosanoids	Chemical messengers between cells
Fat-soluble vitamins (A, D, E, and K)	Involved in a variety of functions including blood clotting, wound healing, vision, and calcium absorption
Fatty acids	Precursor of triglycerides; source of energy
Phospholipids	Major component of cell membranes; aid in fat digestion
Steroid hormones	Chemical messengers between cells
Triglycerides	Energy storage; thermal insulation; filling space; binding organs together; cushioning organs

⁸nicotinamide adenine dinucleotide

FIGURE 2.31 ATP Production. Glycolysis produces pyruvate and a net gain of two ATPs. Anaerobic fermentation converts pyruvate to lactate and permits glycolysis to continue producing ATP in the absence of oxygen. Aerobic respiration produces a much greater ATP yield but requires oxygen.