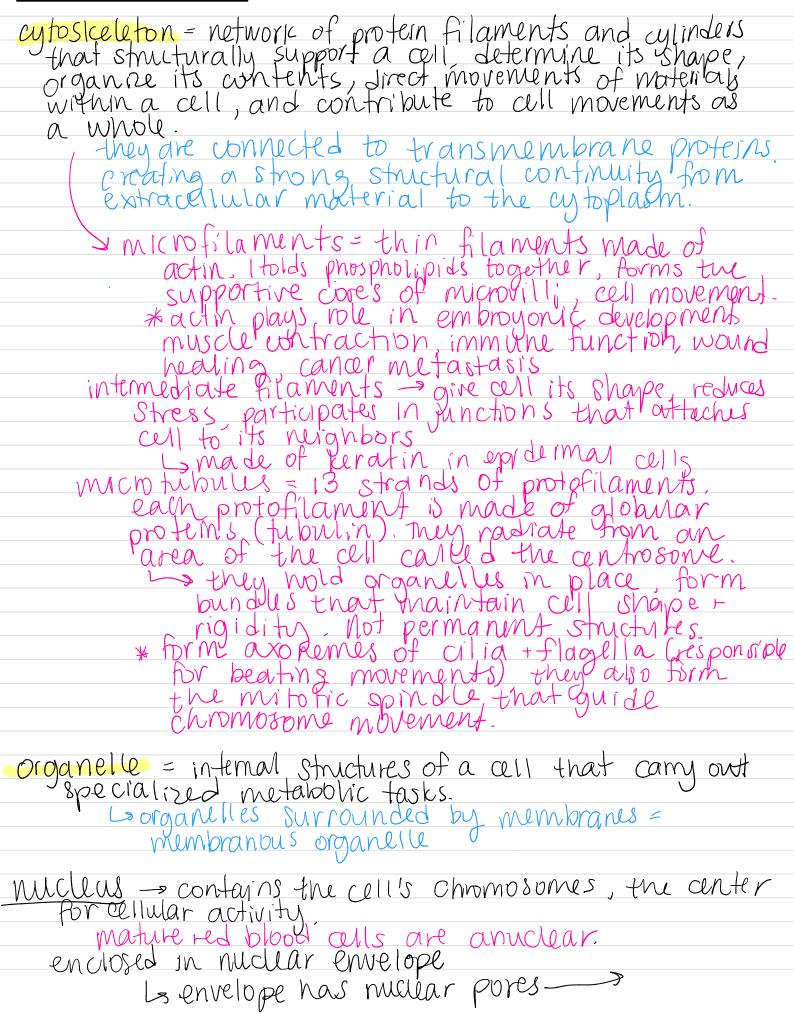

Cytology - the scientific study of alls Liborn in 1668 w/ Robert Hoce Cell Shapes + Sizes Squamous - thin, flat, scaly shape, often w/ kulge where nucleus is Liboidal - squarish (liver cell & Mm Columnar - reetangular (lines stomach + intestines) & micrometer polygonal - irregulor shape Stellate - starlike shape (nerve cells Spheroidal / ovoid - round to volume and Sirface area Lisoidal - disc shaped (smooth muscu cells)	Chapter 3 whole chapter
Cell Shapes · Sizes Squamous - thin, flat, scaly shape, often w/ kulge where nucleus is Cuboidal - squarish (liver cell * Mm Columnar - reetangular (lines stomach + intestines) & misometer used for polygonal - 111equiar shape (nerve cells Stellate - starlike shape (nerve cells Spheraidal / ovoid - round to volume and discoidal - disc shaped (red blood cells) Fusiform - spindle snaped (smooth muscu cells) Fibrous - threadlike (skeletal muscle cells and axons) Basic Component of o cell Cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = fne detail on molecular (evel	\circ
Squamous - thin, flat, sealy shape, often w/ bulge where nucleus is they line the esophagus · form the epidermis Cubvidal - squarish (liver cell * µm <u>columnar</u> - reetanzular (lines stomach + intestines) & misometer polygonal - irregular shape Stellate - starlike shape (nerve cells Spheraidal lovoid - round to volume and discoidal - disc shaped (red blood cells) <u>fibrous</u> - threadlike (skeletal muscle cells and axons) Basic Component of a cell cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = fine detail on molecular level	cell= simple structural and functional unit of life
Laboidal - squarish (liver cell <u>Cuboidal</u> - squarish (liver cell <u>Columnar</u> - reetanzular (lines stomach +intestines) <u>Lonicometer</u> <u>Polygonal</u> - 111egular shape (nerve cells <u>Stellate</u> - starlike shape (nerve cells <u>Spheroidal</u> [ovoid - round to vaume and <u>discoidal</u> - disc shaped (red block cells) <u>fusiform</u> - spindle shaped (smooth muscu cells) <u>fibrous</u> - threadlike (skeletal muscle cells and axons) <u>Basic</u> Component of a cell <u>cytoplasm</u> - fluid b/w cell's nucleus and membrane <u>utrastructure</u> = fne detail on molecular (evel	Cell Shapes * Sizes
Columnar - reetanzular (lines stomach +intestines) Emicrometer polygonal - measuring Stellate - starlike shape (nerve cells Spheraidal lovoid - nound discoidal - disc shaped (red blood cells) Fibrous - threadlike (skeletal muscle cells and axons) Basic Component of or cell Cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = fine detail on molecular (evel	Squamous - thin, flat, scaly shape, often w/ kulge where nucleus is they line the esophagus form the epidermis
Polygonal - Irregular shape Stellate - Starlike shape (nerve cells Spheroidal lovoid - round discoidal - disc shaped (red blood cells) <u>fusiform</u> - spindle shaped (smooth muscu cells) <u>fibrous</u> - threadlike (skeletal muscle cells and axons) Basic Component of a cell cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = free detail on molecular (evel	
Polygonal - Irregular shape Stellate - Starlike shape (nerve cells Spheroidal lovoid - round discoidal - disc shaped (red blood cells) <u>fusiform</u> - spindle shaped (smooth muscu cells) <u>fibrous</u> - threadlike (skeletal muscle cells and axons) Basic Component of a cell cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = free detail on molecular (evel	Columner - reetangular (lines stomach +intestines) by micrometer
Stellal - Starille shape (nerve cells Spheroidal lovoid - round to volume and discoidal - disc shaped (red blood cells) fusiform - spindle shaped (smooth muscu cells) fibrous - threadlike (skeletal muscle cells and axons) Basic Component of a cell cytoplasm - fluid b/w cell's nucleus and membrane Utrastructure = free detail on molecular (evel	VIELO JUY
Spheroidal lovoid - round to volume and discoidal - disc shaped (red blood cells) <u>fusiform - spindle shaped (smooth muscle cells)</u> <u>fibrous - threadlike (skeletal muscle cells and axons)</u> <u>Basic Component of a cell</u> Cytoplasm - fluid b/w cell's nucleus and membrane <u>Utrastructure = fre detail on molecular level</u>	Stellate - Starlike shape (nerve cells
<u>Alscoidal</u> - Alsc shaped (red blood cars) <u>Fusiform</u> - spindle shaped (smooth muscu cells) <u>Fibrous</u> - threadlike (skeletal muscle cells and axons) <u>Basic Component of a cell</u> Cytoplasm - Fluid b/w cell's nucleus and membrane Utrastructure = free detail on molecular level	Spheroidal lovoid - round to voume and
<u>Fibrous</u> - threadlike (skeletal muscle cells and axons) Basic Component of a cell Cytoplasm - Fluid b/w cell's nucleus and membrane Utrastructure = fre detail on molecular level	discoidal - disc shaped (red blood cells) Surface area
Basic Component of a cell cytoplasm - fluid blw cell's nucleus and membrane Utrastructure = fre detail on molecular level	Fusiform - spindle snaped (smooth muscu cells)
cytoplasm - fluid b/w cell's nucleus and membrane Ultrastructure = fine detail on molecultar level	<u>Fibrous</u> - threadlike (skeletal muscle cells and axons)
cytoplasm - fluid b/w cell's nucleus and membrane Ultrastructure = fine detail on molecultar level	Basic component of a cell
cell membrane - surrounds cell ICF = wtosol organelles	Ultrastructure = fine detail on moleculiar level
	cell membrani - surrounds cell ICF = wtosol organelles

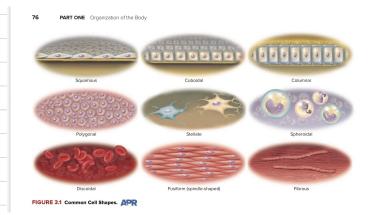


Reverse osmosis = mechanical pressure overrides osmotic pressure, forces water to move against concentration aradient. gradrent. Osmolarity = osmotic concentration milliosmoles / lifer mom/L measure of osmotic pressure in a solution tonicity = ability of a solution to affect the fluid volume and pressure inside a cell Solutions separated by plasma membrane (cells) too much hypotonic solution - absorption of some to much water hypertonic solution - absorption of some to much water hypertonic solution - and shrivel lost too much water hypertonic solution - and some to JCF Langher concentration of some to JCF Isotonic solution = equal some concentration to zcf * normal saline = Mypotonic 0.9% soution Nacl hypertonic solution. (iso tonce to blood alls) too little solute too much solute ()) water ('Y moves out of water moves into for shrming them cell, may purist Carrier - mediated transport -cell membrane is necessary curriers act like enzymes L'out don't onemically cher nge their ligand enzyme, substrate uniport > one type of solute ay mport (votransport) -> two/more, same direction antiport (vounter transport) -> two/more, opposite directions facilitated diffusion = carrier-mediated down concentration gradient * does not use late

the cell interior

-> formed by a ring of proteins called nuclear pore complex. Going into nucleus = normones materials for DNA+RNA synthesis, enzymes, and other Chemical messengers. going out of nucleus = RNA nuclear lamina: supports nuclear envelope + pores, provides point of attachment + organization for the chromosomes inside the nucleus, and plays a role in regulating DNA replication + cell life cycle. ust inside the nuclear envelope. advinalities = genetic diseases + premature cell death. death. nucleoplasm = material in b/w nuclear lamina + nucleolis. Contains chromatin, fine threadlille matter Composed of DNA protein Lanucleoli -> RNA production Endoplasmic Retrallum "Isttle network within the cytoplasm" system of interconnected channels - cisterns - Rough Endoplasmic Reticulum = studded with ribusomes, protein synthesis + makes prospholipids -> tound in RER nucleoli, cytosol mitochondria, nuclear envelope they read coded genetic mess ages from mROLA + assemble amino acid protents a enzymes. - Smooth Endoplasmic Retitutum = no ribosomes, synthesizes steroids + lipids, detoxi Ries alconol " other drugs, manufactures nearly all mimbranes of the Cell, stores calcium + releases it to trigger muscle contraction.

Golgi Complex - Small system of cisterns that synthesize carbony trates + put finishing touches on protein + glycoprotein synthisis. Revieves, cut/splice + adds carb moleties to proteins from RER. mature cistern w/ finished cell products breakup into membrane bound Goigi vesicles. Some become usosomes, some become secretory vesicles (breast mille or digestive enzymes) a package of chrynnes bound by a membrane-Runction to hydrolize proteins, mullic acids, complex carbonydrates, phospholipids, other substrates, and digest/dispose of surplus or nonvital organelles to recycle be used for cell needs, and in process of cell suicide - autophage autolysis = digestion of surplus cells by their own lysosomal enzymes. Peroxisomes - like lysosomes but contain different organic molecules. Their reactions produce mychogen peroxide, which is used to break down other molecules. molecules into water and oxygen. Proteasome = responsible for protein disposal (80%) located in nucleus + cytoplasm, enzymes break down + unfold into short peptites and free amino acids. Mitochondria - ATP synthesis, surrounded by daublemembrane cristàe-inner folds of mitochondria matrix = space blw cristae, contains ribosomes, mitochondrial DNA Centriolls - Short cylindrical assembly of microtubules, arranged in 9 groups of 3 microtubules per group


centrosome = clear patch of cytoplasm near the nucleus containing a pair of perpendicular centricles accumulated cell products (grywgen granules, proments, oil droplets) foreign bodies (viruses, bacteria, dust particles, and other debris phagoeytized by a Cell inclusions) essential for all survival

Chapter 3 Diagrams &

CHAPTER 3 Cellular Form and Function

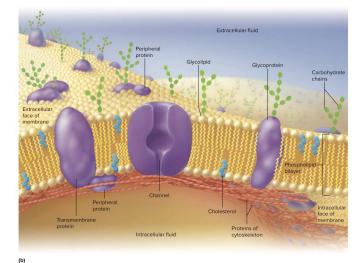

79

TABLE 3.1

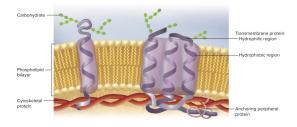
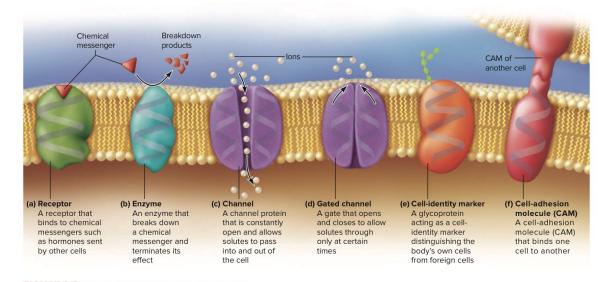
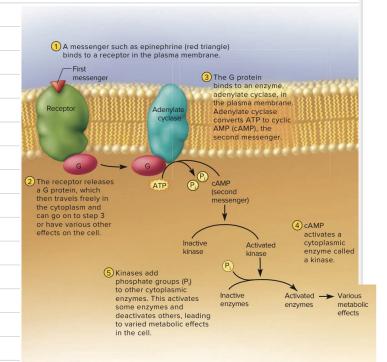

Microfilan Terminal web Desmosom Fat droplet Secretory vesicl Intercellular Golgi vesicles Centroso Golgi comple> Centrioles Lateral cell surface Free ribosomes Intermediate filament - Lysosome Nucleus Nucleolus Microtubule Rough endoplasmic envelone Smooth endoplas Mitochondrio sma membran Basement nembrane Basal cell surface

FIGURE 3.4 Structure of a Representative Cell.


Sizes of Biological Structures in
Relation to the Resolution of the Eye,
Light Microscope, and Transmission
Electron Microscope

Object	Size	
Visible to the Naked Eye (Resolution 70–100 μ m)		
Human egg, diameter	100 μm	
Visible with the Light Microscope (Resolution	on 200 nm)	
Most human cells, diameter	10–15 μm	
Cilia, length	7–10 μm	
Mitochondria, width \times length	0.2 × 4 μm	
Bacteria (Escherichia coli), length	1–3 μm	
Microvilli, length	1–2 μm	
Lysosomes, diameter	0.5 μm = 500 nm	
Visible with the Transmission Electron Microscope (Resolution 0.5 nm)		
Nuclear pores, diameter	30–100 nm	
Centriole, diameter \times length	20×50 nm	
Poliovirus, diameter	30 nm	
Ribosomes, diameter	15 nm	
Globular proteins, diameter	5–10 nm	
Plasma membrane, thickness	7.5 nm	
DNA molecule, diameter	2.0 nm	
Plasma membrane channels, diameter	0.8 nm	



GURE 3.6 Transmembrane Proteins. A transmembrane protein has hydrophobic regions embedded in the phospholipid bilayer drophilic regions projecting into the intracellular and extracellular fluids. The protein may cross the membrane once (left) or multiple ght. The intracellular regions are often anchored to the cytoskeleton by peripheral proteins. (right). The intr 104 of 1233

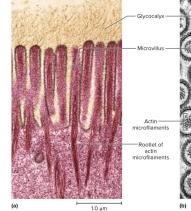

FIGURE 3.5 The Plasma Membrane. (a) Plasma membranes of two adjacent cells (TEM). (b) Molecular structure of the plasma membrane.

FIGURE 3.7 Some Functions of Membrane Proteins.

84 PART ONE Organization of the Body

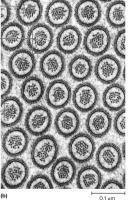
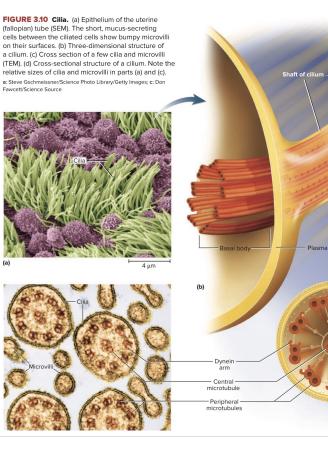


FIGURE 3.9 Microvilli and the Giycocalyx (TEM). The microvilli are anchored by microfilaments of actin, which occupy the core of each

Incroving and project into the cytoplasm. (a) Longitudinal section, perpendicular to the cell surface. (b) Cross section. a: Dow K-sectorized sectorized sectorized section.

nal cells have a fuzzy licks) (fig. 3.9), combrane glycolipids and everyone but identical at enables the body to planted tissues, invadlood types and transfuipids. Functions of the


urface

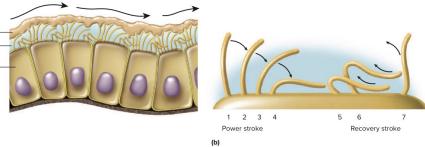
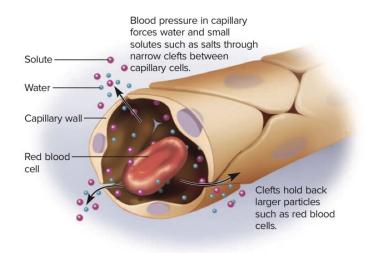

lled *microvilli*, *cilia*, rption, movement, and

TABLE 3.2 Functions of the Glycocalyx

Protection	Cushions the plasma membrane and pro- tects it from physical and chemical injury
Immunity to infection	Enables the immune system to recognize and selectively attack foreign organisms
Defense against cancer	Changes in the glycocalyx of cancerous cells enable the immune system to recog- nize and destroy them
Transplant compatibility	Forms the basis for compatibility of blood transfusions, tissue grafts, and organ transplants
Cell adhesion	Binds cells together so tissues do not fall apart
Fertilization	Enables sperm to recognize and bind to eggs
Embryonic development	Guides embryonic cells to their destina- tions in the body

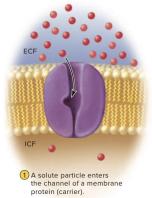
85

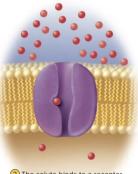


(a)

Mucus – Saline – layer Epithelia cells

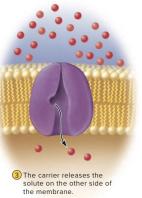
FIGURE 3.11 Ciliary Action. (a) Cilia of an epithelium moving mucus along a surface layer of saline. (b) Power and recovery strokes of an individual cilium. The cilium goes limp on the recovery stroke to return to its original position without touching the mucus above.

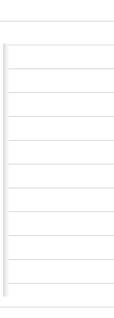

FIGURE 3.13 Filtration Through the Wall of a Blood Capillary. Water and small solutes pass through gaps between cells, while blood cells and other large particles are held back.



(a) Hypotonic

(c) Hypertonic


FIGURE 3.15 Effects of Tonicity on Red Blood Cells (RBCs). (a) RBC swelling in a hypotonic medium such as distilled water. (b) Normal RBC size and shape in an isotonic medium such as 0.9% NaCl. (c) RBC shriveling in a hypertonic medium such as 2% NaCl. a-c: David M. Phillips/Science Source



2 The solute binds to a receptor site on the carrier and the carrier changes conformation.

FIGURE 3.17 Facilitated Diffusion. Note that the solute moves down its concentration gradient.

Transport Without Carriers	Movement of Material Without the Aid of Carrier Proteins
Filtration	Movement of water and solutes through a selectively permeable membrane as a result of hydrostatic pressure
Simple diffusion	Diffusion of particles through water or air or through a living or artificial membrane, down their concentration gradient, without the aid of membrane carriers
Osmosis	Net flow of water through a selectively permeable membrane, driven by either a difference in solute concentration or a mechanical force
Carrier-Mediated Transport	Movement of Material Through a Cell Membrane by Carrier Proteins
Facilitated diffusion	Transport of particles through a selectively permeable membrane, down their concentration gradient, by a carrier that does not directly consume ATP
Primary active transport	Transport of solute particles through a selectively permeable membrane, up their concentration gradient, by a carrier that consumes ATP
Secondary active transport	Transport of solute particles through a selectively permeable membrane, up their concentration gradient, by a carrier that doesn't use ATP itself but depends on concentration gradients produced by primary active transport elsewhere in the membrane
Cotransport	Simultaneous transport of two or more solutes in the same direction through a membrane by a carrier protein called a <i>symport</i> , using either facilitated diffusion or active transport
Countertransport	Transport of two or more solutes in opposite directions through a membrane by a carrier protein called an <i>antiport</i> , using either facilitated diffusion or active transport
Vesicular (Bulk) Transport	Movement of Fluid and Particles Through a Plasma Membrane by Way of Membrane Vesicles; Consumes ATP
Endocytosis	Vesicular transport of particles into a cell
Phagocytosis	Process of engulfing large particles by means of pseudopods; "cell eating"
Pinocytosis	Process of imbibing extracellular fluid in which the plasma membrane sinks in and pinches off small vesicles containing droplets of fluid; "cell drinking"
Receptor-mediated endocytosis	Phagocytosis or pinocytosis in which specific solute particles bind to receptors on the plasma membrane, and are then taken into the cell in clathrin-coated vesicles with a minimal amount of extraneous matter
Exocytosis	Process of eliminating material from a cell by means of a vesicle approaching the cell surface, fusing with the plasma membrane, and expelling its contents; used to release cell secretions, replace worn-out plasma membrane, and replace membrane that has been internalized by endocytosis

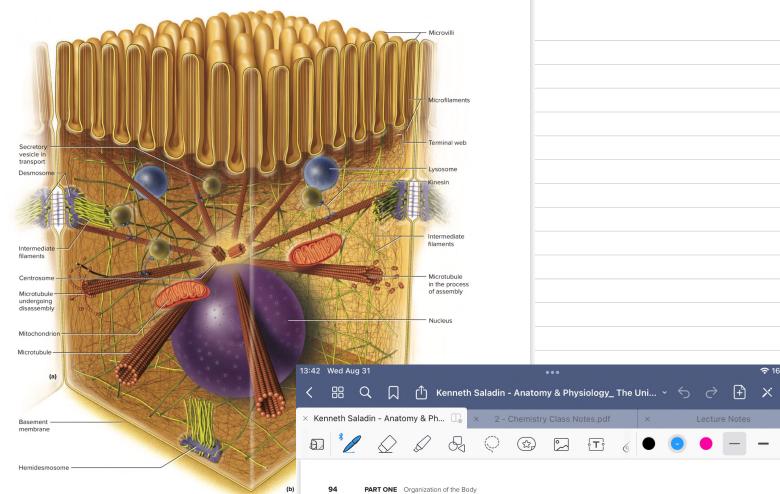


FIGURE 3.24 The Cytoskeleton. (a) Components of the cytoskeleton. Few organelles are shown in order to emphasize the cytoskeleton. (b) Cells with their cytoskeletons labeled with fluorescent antibodies, photographed through a fluorescence microscope. The density of a typical cytoskeleton far exceeds even that shown in part (a). The pink bodies are the cell nuclei. b: Dr. Torsten Wittmann/Science Source

94 PART ONE Organization of the Body

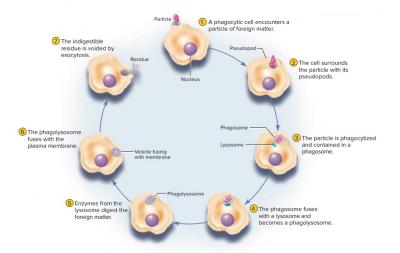


FIGURE 3.20 Phagocytosis, Intracellular Digestion, and Exocytosis.

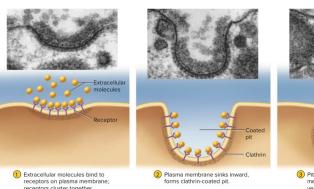
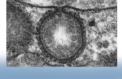
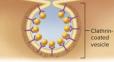




FIGURE 3.21 Receptor-Mediated Endocytosis. 1-3: Courtesy of The Co mpany of Biologists, Ltd

Pit separates from plasma membrane, forms clathrin-coated vesicle containing concentrated molecules from ECF.

99

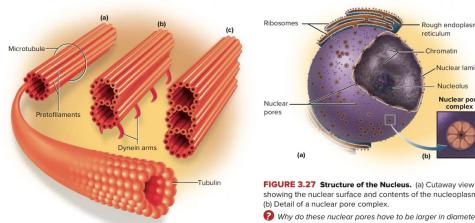
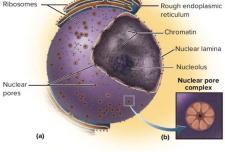



FIGURE 3.25 Microtubules. (a) A microtubule is composed of 13 protofilaments. Each protofilament is a helical array of globular proteins called tubulin. (b) One of the nine microtubule pairs that form the axonemes of cilia and flagella, with the motor protein dynein attached. (c) One of the nine microtubule triplets that form a centriole.

showing the nuclear surface and contents of the nucleoplasm.

Why do these nuclear pores have to be larger in diameter than the channels in the cell's plasma membrane? (See table 3.1.)

masses called nucleoli (singular, nucleolus), where ribosomes are produced. The genetic function of the nucleus is described in section 4.2.

Endoplasmic Reticulum

Endoplasmic reticulum (ER) literally means "little network within the cytoplasm." It is a system of interconnected channels

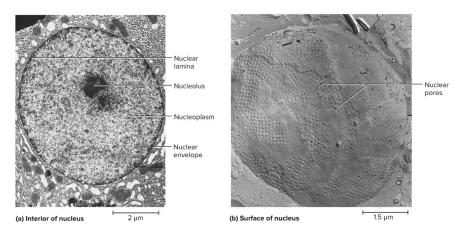


FIGURE 3.26 The Nucleus as Seen by Electron Microscopy. These photomicrographs were made by different TEM methods to show the internal structure of the nucleus and surface of the nuclear envelope. (a) Interior of the nucleus. (b) Surface of the nucleus, showing clusters of nuclear pores.

122 of 1233 ard Chao; b: ©E.G. Pollock

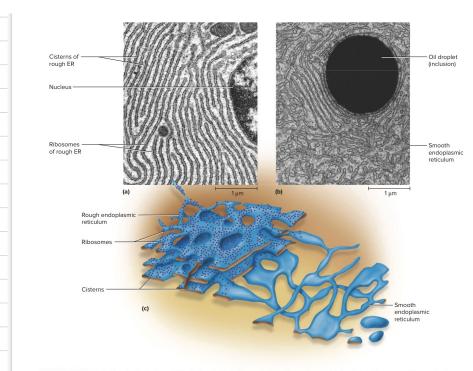
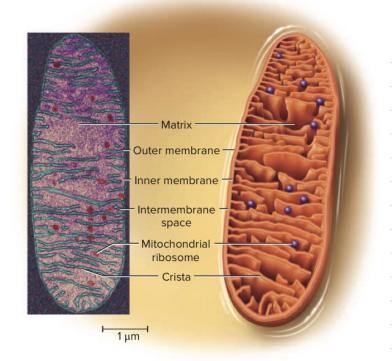
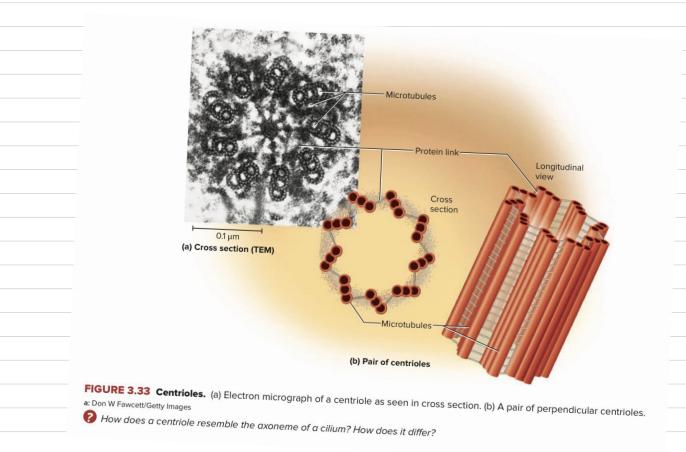




FIGURE 3.28 Endoplasmic Reticulum (ER). (a) Rough ER. (b) Smooth ER and an inclusion (oil droplet). (c) Structure of the endoplasmic reticulum, with rough and smooth region a-b: Don Fawcett/Science Source

FIGURE 3.32 A Mitochondrion.

Keith R. Porter/Science Source

Structure	Appearance to TEM	Function
Plasma membrane (fig. 3.5)	Two dark lines at cell surface, separated by a narrow light space	Prevents escape of cell contents; regulates exchange of materials between cytoplasm and extracellular fluid involved in intercellular communication
Microvilli (fig. 3.9)	Short, densely spaced, hairlike processes or scattered bumps on cell surface; interior featureless or with bundle of microfilaments	Increase absorptive surface area; widespread sensor roles (hearing, equilibrium, taste)
Cilia (fig. 3.10)	Long hairlike projections of apical cell surface; axoneme with usually a 9 + 2 a <u>rray of microtubule</u> s	Move substances along cell surface; widespread sensory roles (equilibrium, smell, vision)
Flagellum	Long, single, whiplike process with axoneme	Sperm motility
Microfilaments (figs. 3.9 and 3.24)	Thin protein filaments (6 nm diameter), often in parallel bundles or dense networks in cytoplasm	Support microvilli and plasma membrane; involved in muscle contraction and other cell motility, endocytosi and cell division
Intermediate filaments (fig. 3.24)	Thicker protein filaments (8–10 nm diameter) extending throughout cytoplasm or concentrated at cell-to-cell junctions	Give shape and physical support to cell; anchor cells to each other and to extracellular material; compart- mentalize cell contents
Microtubules (figs. 3.24 and 3.25)	Hollow protein cylinders (25 nm diameter) radiating from centrosome	Form axonemes of cilia and flagella, centrioles, basal bodies, and mitotic spindles; enable motility of cell parts; form trackways that direct organelles and macr molecules to their destinations within a cell
Nucleus (figs. 3.4, 3.26, and 3.27)	Largest organelle in most cells, surrounded by double membrane with nuclear pores	Genetic control center of cell; directs protein synthes shelters the DNA
Rough ER (fig. 3.28a)	Extensive sheets of parallel membranes with ribosomes on outer surface	Protein synthesis and manufacture of cellular mem- branes
Smooth ER (fig. 3.28b)	Branching network of tubules with smooth surface (no ribo- somes); usually broken into numerous small segments in TEM photos	Lipid synthesis, detoxification, calcium storage
Ribosomes (fig. 3.28c)	Small dark granules free in cytosol, on surface of rough ER and nuclear envelope, and inside nucleus and mitochondria	Interpret the genetic code and synthesize polypeptid
Golgi complex (fig. 3.29)	Several closely spaced, parallel cisterns with thick edges, usually near nucleus, often with many Golgi vesicles nearby	Receives and modifies newly synthesized polypeptide synthesizes carbohydrates; adds carbohydrates to gly- coproteins; packages cell products into Golgi vesicles
Golgi vesicles (fig. 3.29)	Round to irregular sacs near Golgi complex, usually with light, featureless contents	Become secretory vesicles and carry cell products to apical surface for exocytosis, or become lysosomes
Lysosomes (fig. 3.30a)	Round to oval sacs with single enclosing membrane, often a dark featureless interior but sometimes with protein lay- ers or crystals	Contain enzymes for intracellular digestion, autophag programmed cell death, and glucose mobilization
Peroxisomes (fig. 3.30b)	Similar to lysosomes; often lighter in color	Contain enzymes for detoxification of free radicals, alcohol, and other drugs; oxidize fatty acids
Proteasomes (fig. 3.31)	Small cytoplasmic granules composed of a cylindrical array of proteins	Degrade proteins that are undesirable or no longer needed by a cell
Mitochondria (fig. 3.32)	Round, rod-shaped, bean-shaped, or threadlike structures with double enclosing membrane and shelflike infoldings called cristae	ATP synthesis
Centrioles (fig. 3.33)	Short cylindrical bodies, each composed of a circle of nine triplets of microtubules	Form mitotic spindle during cell division; unpaired ce trioles form basal bodies of cilia and flagella
Centrosome (fig. 3.24)	Clear area near nucleus containing a pair of centrioles	Organizing center for formation of microtubules of cytoskeleton and mitotic spindle
Basal body (fig. 3.10b)	Unpaired centriole at the base of a cilium or flagellum	Point of origin, growth, and anchorage of a cilium or flagellum; produces axoneme

(random information 2 got wrong on worksheets) Cubbidal cells line the INCY Squamous cells line the esophagus Lissue fluid = interstitial Pluid 75% of plasma membrane = phospholipids Sglycolipids form the glycocalyx physical pressure drives filtration through a membrane filtration/capillary filtration (blood pressure) forces fluid through gaps in the capillary wall physical force generated by a liquid = hydrostatic pressure tonicity = the ability of a solution to cause asmosis, affects volume + pressure enzymes to be secreted by the cell are produced on the RER lysosomes arise from Golgi appoiratus

microvilli and differ in function and structure

Chapter 4 insight 4.3

DEEPER INSIGHT 4.3

CLINICAL APPLICATION

Cancer

Anyone awaiting the results of a tumor biopsy hopes for the good news: benign! This means the tumor is slow-growing and contained in a fibrous capsule so it will not metastasize, and in most cases it is relatively easy to treat. The dreaded news is that it's malignant, meaning that it tends to grow rapidly and to *metastasize*—to give off cells that seed the growth of multiple tumors elsewhere, such as colon cancer metastasizing to the lungs and brain (**fig. 4.22**).

Oncology is a medical specialty that deals with both benign and malignant tumors, but only malignancies are called *cancer*. The word *cancer* literally means "crab." Hippocrates was the first to use the word this way, upon seeing a breast tumor with a tangle of blood vessels that reminded him of a crab's outstretched legs. Energy-hungry tumors often stimulate such ingrowth of blood vessels—a phenomenon called *tumor angiogenesis*. Cancers are named for the tissue of origin: *carcinomas* originate in epithelial tissue; *lymphomas* in the lymph nodes; *melanomas* in pigment cells (melanocytes) of the epidermis; *leukemias* in blood-forming tissues such as bone marrow; and *sarcomas* in bone, other connective tissue, or muscle. About 90% of malignancies are carcinomas.

Only 5% to 10% of cancers are hereditary, but cancer is always a genetic disease. This is not as contradictory as it may seem. Most cases are due to mutations arising anew in the affected individual, not to genes inherited from a parent. Mutations can arise through errors in DNA replication or from exposure to carcinogens—radiation such as ultraviolet rays and X-rays; chemicals such as cigarette tar; and viruses such as human papillomavirus (HPV), hepatitis C, and type 2 herpes simplex.

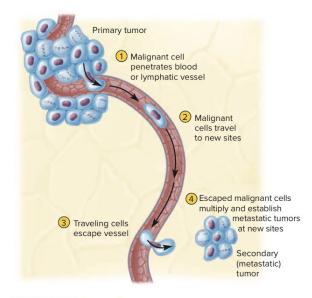


FIGURE 4.22 Metastasis. The process by which malignant cells escape from a primary tumor, travel in the blood or lymph, and seed the growth of new (metastatic) tumors in other localities. Colon cancer, for example, can metastasize to the liver or brain by this method.

Oncologists are especially interested in two families of cancer genes called oncogenes and tumor suppressor genes. An oncogene is analogous to a stuck accelerator on a car-it causes cell division to accelerate out of control, sometimes by inducing the excessive secretion of growth factors that stimulate mitosis, or the production of excessive growth-factor receptors. An oncogene called ras underlies about onequarter of human cancers, and erbB2 is a common factor in breast and ovarian cancer. Tumor suppressor (TS) genes inhibit cancer by opposing oncogene action, coding for DNA-repair enzymes, and other means. Consequently, mutations that destroy their protective "braking" function can lead to cancer. Mutation of a TS gene called p53, for example, is involved in about 50% of cases of leukemia and colon, lung, breast, liver, brain, and esophageal tumors. Many human cancers are associated, however, not with mutation but with aberrant DNA methylation, which can, for example, silence one's TS genes and thus turn off their protective function.

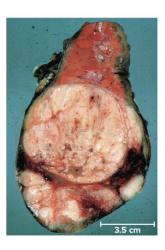


FIGURE 4.23 Wilms Tumor. A malignant tumor of the kidney occurring especially in children.

Source: From the University of Alabama at Birmingham, Department of Pathology PEIR Digital Library \circledcirc http://peir.net

Cancer seldom results from just one mutation. It usually requires 5 to 10 mutations at different gene loci. It takes time for so many mutations to accumulate, which is why cancer is more common in the elderly than in the young. In addition, as we age, we accrue more lifetime exposure to carcinogens, our DNA- and tissue-repair mechanisms become less efficient, and our immune system grows weaker and less able to detect and destroy malignant cells.

About one in every five of us in America will die of cancer. Cancer is almost always fatal if not treated. Malignant tumors replace functional tissue in vital organs (fig. 4.23); they steal nutrients from the rest of the body, sometimes causing a severe wasting away called *cachexia* (ka-KEXee-ah); they weaken one's immunity, opening the door to *opportunistic infections* that a healthier person could ward off; and they often invade blood vessels, lung tissue, or brain tissue, with such consequences as hemorrhage, pulmonary collapse, seizures, or coma. Mortality usually results not from the original (primary) tumor, but from metastasis.

Cancer is usually treated with surgery, chemotherapy, or radiation therapy. Two lively areas of cancer research today are the development of drugs to starve tumors by blocking tumor angiogenesis, and *cancer immunotherapy*, programming one's own immune cells (T cells) to selectively recognize and attack tumor cells.

tissue = cells + matrix

tissul = group of similar cells and cell products that arise from the same region of the embryo and work together to perform a specific structural or physiological role in an organ.

- 1. Connective
- 2. Epithelial 3. Nervous

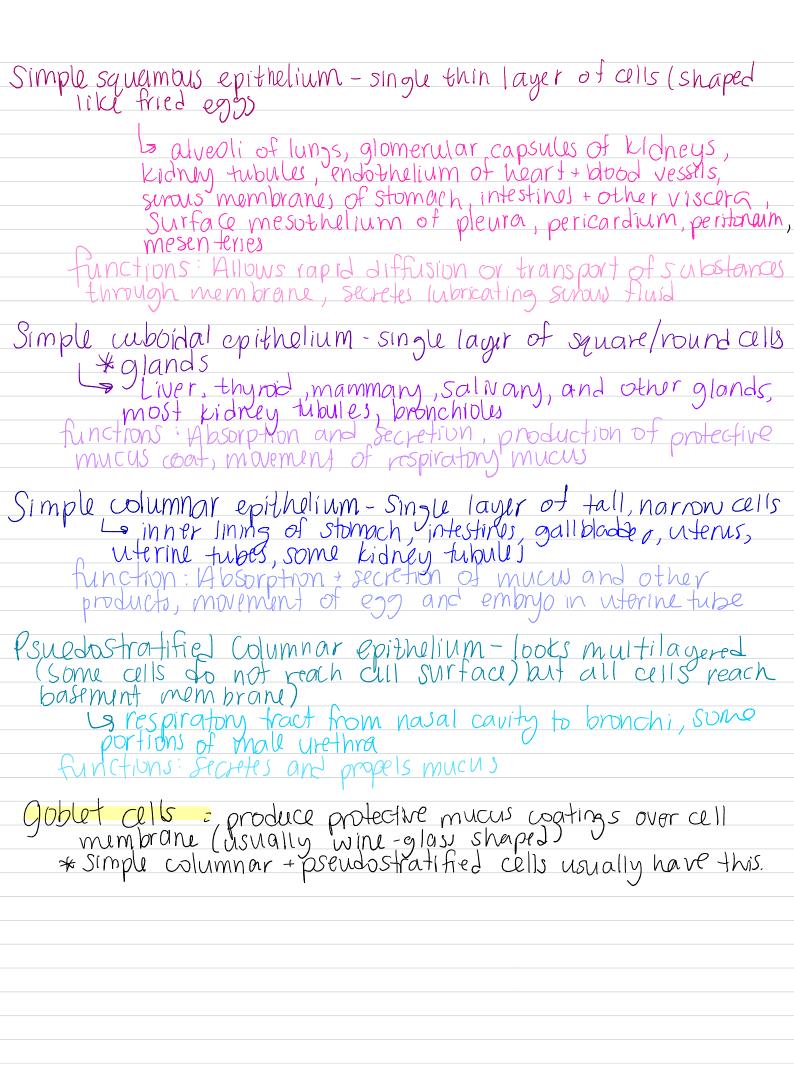
- KMatrix = extrace (1 ular materia)

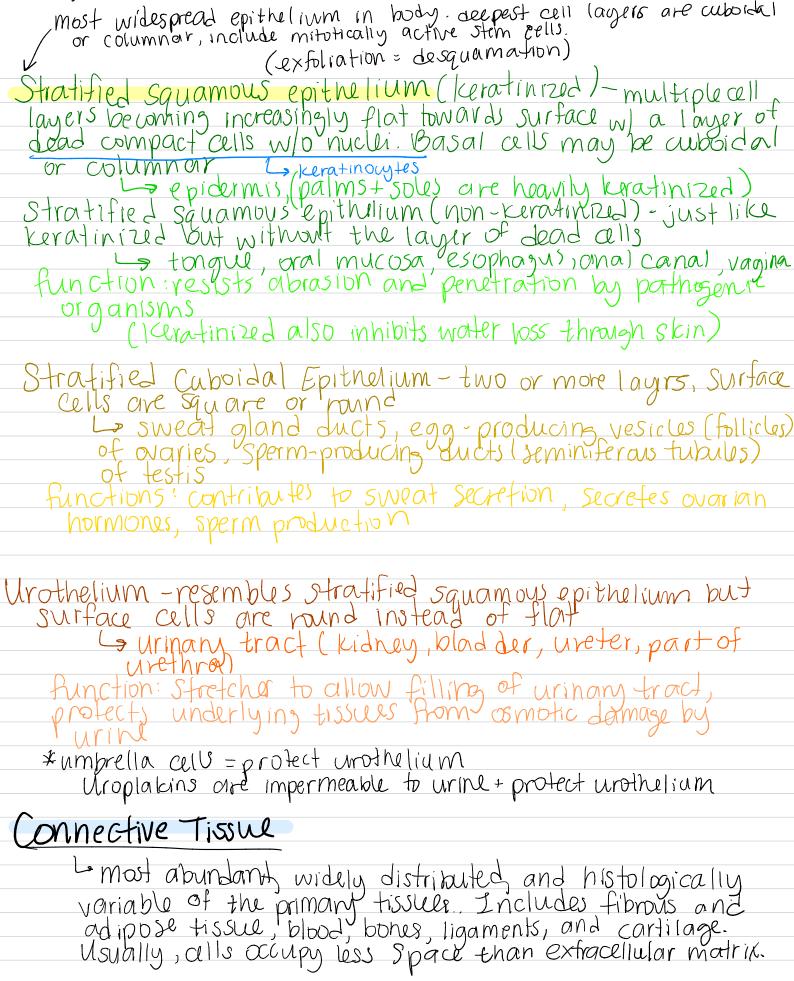
4. Muscular

material

Epithelial - Tissue composed of closely spaced cells that cover organ surfaces, firm glands, serve for protection, secretion, and absorption ex: epidermis, inner lining of digestive tract, liver. other glands

Connective - Tissue usually with more matrix than cell volume, often specialized to support and to protect organs and bind tissues + organs to each other ex: tendons, ligaments, Cartilage, bones, blood


Nervous - Tissue containing excitable cells specialized for rapid transmission of coded information to other cells ex: brain, spinal cord, nerves


Muscular - Tissue composed of elongated, excitable muscle cells specialized for contraction ex: skeletal muscles, cardiac muscle, walls of viscera (smooth muscle)

matrix is composed of fibrous proteins ; clear gel-s (ground substance, tissue fluid, extracellular fluid [ECF], or interstitual fluid) * ground substance contains water, minerals, gases, wastes, hormones, nutrients, etc.

Embroyonic Tissues development of 3 primary tissues in the embryo = embrogenesis
1st tissues when fertilized egg divides itself into cells " cells organize themsilves into layers.
first 3 layers = primary germ layers eventually becomes all of the body's mature tissues
ectoderm -> outer layer (epidermis + nervous system) mesoderm -> middle layer, turns into mesenchyme (cardiac muscle, endoderm -> inner layer (digestive tract bones + blood) respiratory tract = digestive glands)
Most tissues come from 2 or more primary germ layers
Interpreting Tissue Sections
histological sections = thin slices of a tissue on a microscope
* tissue sections are prepared in a fixative * stains enhance detail on slide Smear = liquid tissue is rubbed/spread across slide (instead of slide)
Epithelial Tissue (brick and mortal) * AVASCULAR*
 Consists of a sheet of closely adhering cells, one or more cells thick, with the upper surface doubling exposes to the environment or to an internal space in the body * covers body surface lines body cavities, forms the external and internal linings of many organs, and constitutes most gland tissue. Functions: protection against injury or infection secretions (glands) excretions (CO2, bile, wastes, etc) Hosorption Filtration (blood vessels * kidneys) Sensation (touch of skin or irritation of stomach)

Epithelial cells usually lie on vessel-rich layer of connective tissue, which given them nutrients and waste removal (through diffusion?) * basement membrane = between epithelium and epithelial tissue 1. anchors epithelial to connective tissue closest to tissue 2. binds growth factors to regulate epithelial growth connective tissue 3. controls exchange of materials b/w connective nave a higher tissue and epithelium connective tissue nave a mitosis, tissue and epithelium rate of mitosis, to repair basal surface = part of epithelial cell twy are able to repair themselves faster that faces basement membrane towards body surface or internal cavity (lumen) of an organ sidewall (between basal and apical surface) = lateral surface Simple epithelium = one layer, all connected to basement Stratified = more than one layer, one layer rests on top of t, he other L'urothelium = unique to the urinary tract aka transitional epithelium pseudostratified = looks like more than one layer, but at least a little bit of each all makes contact with basement membrane columnar J cuboidala Squamou)

tunctions of connective tissue:

- 1. Binding of orgoins (tendons, ligaments, fat, fibrous tissue)
- 2 Support works + cartilage
- 3. Physical protection bones + fat
- 4. immune protection = blood 5. movement bones + cartillage
- 6. Storage] fat 7. heat production] fat
- 8. transport (6100)

Fibrous Connective Tissue

Cell Types]

Fibroblasts - large, fusiform or stellate cells that often have thin, whispy branches. They produce ground substance and fibers that form the matrix of the tissue.

Macrophages - Large phagocytic cells that engulf + destroy bacterial dead/dying cells, or other foreign particles. They arise from monocytes (wBCs)

Leukocytes (WBCs) - White Blood Cells (immune system) neutophils - attack bacteria iymphocytes -> forms dense patches in mucous membranes react against toxins, bacteria, or other foreign agents.

Plasma Cells - Cerfain lymphocytes turn into plasma cells when they detect foreign agents. They make antibodies seen in wall of intestines, inflamed tissue

Mast Cells - Secrete heparin (anti-blood clothing) and histamine (increases localized blood flow) in Blood vesuels ad pocytes - fat celu

Fiber Types]

Collagenous Fibers - fibers (made of collagen) that are bough and flexible and resist stretching.

Body's most abundant protein (25% total) #tendons, ligaments, and dermis mainly made of collagen

Reticular Fibers - thin collagen fibers coated with glywprotein. they form a spongelille framework for organs like the spleen and lymph nodes, constitute part of basement membrand for epithelia

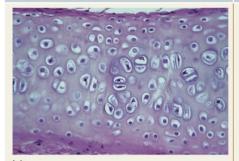
Elastic Fibers - thinner than collagenous fibers, made of elastin coated with fibrillin (gly coprotein) Stretches under tension and returns to its original length when releases, responsible for resilience of organs like lungs and skin

* e a sticity is the tendency to recoil when stretched, NOT the ability to stretch

glycosaminoglycan = a polysaccharide composed of modified augars with annino groups - the major component of a proteoglycan (GAG)s are responsible for the viscous consistency of tissue get and stiffness of cartilage.

proteoglycan = a large multille composed of a bristlelike avronsement of glycesaminoglycans surrounding a protein core in a shape resembling a bottle brush. Binds ells to extracellular materials and gives the tissue fluid a gelatinous consistency

adhesive glycoproteins = protein-carbohydrate complexes that bind plasma membrane proteins to extra cellular collagen and proteoglycans. They bind the components of a fissue fogether and mark paths that quide migratic embryonic cells to their destinations in a fissue.


Types of fibrous connective tissue
LOOSE= areolar, reticular tissues
dense = dense regular, dense irregular connective tissues
possesses all 6 cell types
Areolar Tissue - loose arrangement of collagenous and
elastic fibers; scattered cells of various types, lots of ground substance, numerous blood vessels - Underlying most epithelia, surrounding blood vessels,
types, lots of ground substance, numerous block vesses
nerves, trachea, esophagus; fascia b/w musiles, mesenteries,
visceral layers of pericardium and pleura
function! Loosely binds epithilia to deeper tissues, allows
passage of nerves and blood vessels through other tissues,
provides arena for immune defense, blood vessels provide hutrients and waste removal Br overlying epithelia
Reticular Tissue - Loose network of reticular fibers and cells, infiltrated with numerous leukocytes, especially
cells, infiltrated with numinous leukocytes, especially
lymphycytes
Lymphycytes symph nodes, Splein, thymus, bone manow function: forms supportive framework for lymphatic organs only alls are fipopplats
Dradhs supportive randwork for anotherite
Organs only alls are finnblasts
Dense Regular connective Tissue - densily packed,
Dense Regular connective Tissue - density packed, wavy, parallel collagen fibers, scorcity of proved vessels
final man ligaments
tinctions: ligaments tighting bind bones together and resist stress; tendons attach muscles to bones and transfer
muscullar tension to bonk) \$ upcal chids + spinal ling ownents are made of
muscular tension to bond #vocal cords + spinal ligownents are made of elaistic +issue
Dense Irregular Connective Tissue - Pensely packed collagen Fipers running in random directions, scarcity of plood vessels
fipers running in random directions, scarcity of blood
VESTES
Such as liven kidning coloth: tibming shouths amind
Such as liven kidney speen; fibrous sheaths around cartilage and ponts
tun CHONS: WITISTONIO STRESS IN UNDRESIGTADU OUROTIVIS,
imports durability to tissues
Lalso firms fibrous sheath surrounding nerves, bones, cartilager.

Adipose tissul = fait (made of adipocytes). Space b/w adipocytes is occupied by circolar, reticular and blood capillary tissues. Large, empty-looking cells with twin margins. Blood vessels present. Lo subcutaneous skin layer, preasts, heart surface, mesenteries, surrounding organs (kidneys and eyes) function: energy storage, next insulation, nead production (brownfal) protective cushion for organs, filling space, shaping body Fat= budy's primary energy reservoir. white /yellow fat = provides thermal insulation, shapes body, cushions organs brown fat (found in infants, children, fetuses, and adults Esmall deposits in adults)-heat generating <u>Cartilage</u>-relatively stiff connective tissue with a nubbery matrix produced by cells called chondroblasts. * cells in lacunal (cavities) are called chondrocytes. no blood capillaries (I gave up writing out the table (01) hyaline cartilage - named for its clear, glassy appear ance tibrocartilage-named for its coarse bundles of collagen perichondrium-sheath of dense irregular connective tissue that surrounds elastic and hyperine cartilage

TABLE 5.7

Cartilage

Hyaline Cartilage

(a) Cell Lacunae Matrix nest Perichondrium Chondrocytes

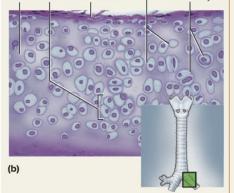
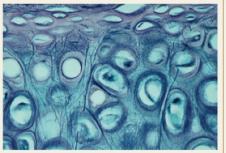
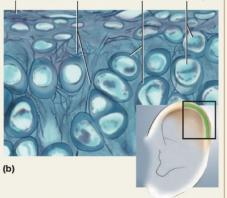
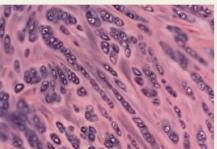



FIGURE 5.19 Hyaline Cartilage. Bronchus (×400). (a) Light micrograph. (b) Labeled drawing.

Microscopic appearance: Clear, glassy matrix, often stained light blue or pink in tissue sections; fine, dispersed collagen fibers, not usually visible; chondrocytes enclosed in lacunae, often in small clusters of three or four cells *(cell nests)*; usually covered by perichondrium

Representative locations: A thin articular cartilage, lacking perichondrium, over the ends of bones at movable joints; supportive rings and plates around trachea and bronchi; a boxlike enclosure around the larynx; much of the fetal skeleton; and a costal cartilage attaches the end of a rib to the breastbone Functions: Eases joint movements; holds airway open during respiration; moves vocal cords during speech; a precursor of bone in the fetal skeleton and the growth zones of long bones of children


Elastic Cartilage


Elastic Perichondrium fibers

(a)

Fibrocartilage

Collagen fibers

(a)

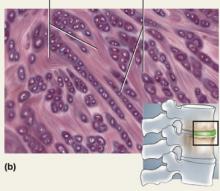


FIGURE 5.20 Elastic Cartilage. External ear (×1,000). (a) Light micrograph. (b) Labeled drawing.

Microscopic appearance: Elastic fibers form weblike mesh amid lacunae; always covered by perichondrium Representative locations: External ear; epiqlottis

Functions: Provides flexible, elastic support

FIGURE 5.21 Fibrocartilage. Intervertebral disc (×400). (a) Light micrograph. (b) Labeled drawing.

Microscopic appearance: Parallel collagen fibers similar to those of tendon; rows of chondrocytes in lacunae between collagen fibers; never has a perichondrium **Representative locations:** Pubic symphysis (anterior joint between two halves of pelvic girdle); intervertebral discs, which separate bones of vertebral column; menisci, or pads of shock-absorbing cartilage, in knee joint; at points where tendons insert on bones near articular hyaline cartilage

Functions: Resists compression and absorbs shock in some joints; often a transitional tissue between dense connective tissue and hyaline cartilage (for example, at some tendon–bone junctions) Bone (OSSEOUS FISSUE) - hard, calcified connective FISSUE that composes the skeleton.

* bone is also composed of cartilage, bone marrow, dense irregular connective tissue, etc

Calcified matrix arranged in concentric lamellae anound central canals, osteucytes in lacunal blw adjacent lamellae, lacunal interconnected by delicate canaliçu (1'

L= skeleton function: physical support of the budy, leverage for muscle action, protective enclosure of viscera, reservoir of calcium and phosphonis

spongy pore = inside, fills heads of long bones and forms middle layer of flat bones compact (dense) bone = atter shell + external surfaces of

* most compact bone is arranged in cylinders of tissues that surround <u>central (osteonic)</u> canats, which run longitudinally Blood vessels + nerves op through these canals

Concentric lamellae - unionlike layers around each canal that bone matrix is deposited in

Osteon - central canal surrounding lamellal

Osteocytes = matine bone cells (occupy tiny lacunal between lamellare)

periasteum-covering of the bone -> tough = fibrous

Blood - fluid connective tissue. Primary function = transport cells + dissolved matter BCs formed elements = 6/002 plasma J × plood does not exhibit fibers except while it clots Erythrocycles, wBCs, platelets

RBCS

functions: transports gases, waster, Chancical signals, heat, wBCs, clotting agents, tissue maint enance + repair

Cells of cardiac muscle = cardiomyocytes
Cardiac Muscle-short, branched cells (striated?)
Cardiac Muscle - short, branched cells (striated?) La heart Functions: pumping blood, <u>INVOLUNTARY</u> CONTROL
C_{100} c_{1

Strooth MISCU - Short, fusition alls averlapping lach other, non-striatte sheets of tissue in walls of plood vessels and viscera (digestive tract, iris, hajr follicles, sphincters of urethra + anus) INVOLUNTARY CONTROL functions 'swallowing contraction of stomach and intestine's expulsion of feees and urine labor contractions, control of plood pressure "flow, control of respiratory air flow, control of pupillary digmeter, erection of hairs

Cellular Junctions, Glands, Membranes

<u>cell junction</u> = connection b/w one cell and another senable cells to resist stress, communicate, and control movement of substances b/w tissues.

<u>tight junction</u> - plastic 6-pack can herness Laplasma membranes are linked by transmombane cell-adhosion proteins Capical surface * substances can I pass blue cells, but some things can pass through them

Desmosome - button on jeans La keeps cells from pulling apart, enables tissue to resist mechanical stress Kommon in epidemis, cervix, cardiac muscle connects cytoskeleton to cell membrane, links to transmembrane protein of next cell

hemidesmusome = half-desmosome (each cell contributor half a desmosome)

$\left(2 - \frac{1}{2}\right) \left(2 - \frac{1}{2$
Gap Junctions - (communication formed by connexon consists of 6 TMPs arranged in a ring a * allows thing to pass through cells
Glands- cell/organ that secretes substances, composed mostly of epithelial fissue
exocrine glands - ducts -> secreting something to body surface (sweat, tears, etc) or into cavity of another organ (salivary glands, liven panoreas)
endocrine glands-no ducts -> secrete products into 61002 (hormones)
Unicellular glands = secretory cells predominantly nonsecretory
Exocrine Gland Structure - multicullular Ex. glands enclosed in a capsule Capsule fibrous covering of a structure
Capsule=fibrous covering of a structure
Connective tissue framework of gland = Stroma
I gives off extensions (septum or trabeculae)
divisions of the interior of gland = lobes
cells that perform synthesis and secretion = parenchyma
simple structure = unbranched duct,
compound structure = branched duct
tubular = gland with uniform duct + secretory diameter
Types of Secretions
Serous = thin + watery (milk, tears, sweat)
mucous = secretes mucin (oral + nasal cavities)
mixed = Senous + mucous

modes of secretion

ec crine glands (merocrine) - release products via exocutosis Later glands, salivary glands, ractose + milk protein (casein, lactalbumin)

apocrine glands - lipids coalesce from cutosol into a droplet that buds from all surface, covered by a layer of plasma membrane + thin film of cytoplasm (sweat)

holocrine glands - cells accumulate a product and then dismtegrates, bewming the secretion instead of revosing * thick + oily (oil-producing glands on scalp + skin)

Membrane) - covering of viscera + organ linings connective, epitulial or epithetial + connective + mascular (utaneous membrane = Skin (dm)

MUCOUS membrane -> lines passage that open up to environment (digestive, respiration), urinany, reproductive tracts) 3 layers 1. an epithelium 2 areolar connective tissue (lamina propria) 2 areolar connective tissue (lamina propria) 2 areolar muscu (muscularis mucasae)

protective, and absorptive functions.

Strous membrane-produce watery strow fluid? composed of simple squamous epithelium resting on thin layer of areolar connective tissue. experies pericardium, peritoneum arises from blood series

lines inside of body cavities + forms a smooth outer surface on viscera (digestive tract)

endothelium = Inner lining (bloud vessels) - derived from meso derm

connective tissue membranes = dura mater, periosteum, synavial membranes

Tissul Growth, Development, Repair, Degeneration
hyperplasia = most embryonic +childhood growth (tissue growth through all multiplication)
hypertrophy = enlargement of preexisting alls (adipose fissult skelltal muscle)
Replasia - development of tumor
differentiation = development of specialized form + function
metaplasia = change of one mature tissue type to another
Stem cells = undifferentiated cells
developmental plasticity = diversity of mature cell types they can become
* embryonic stem cells compose the human embryo
unlimited duelopmental plasticity = totipotency
pluripotent = embryonic cells that can't develop into accessory organs of pregnancy
Multipotent = able to develop into two or more mature cells
unipotent = able to differentiate into one type of mature cell reproductive cells
Tissue Repair
regeneration-replacement of dead/ damaged cells with the same cell types as before. > liver iskin injuries
Fibrosis-replacement of damaged tissue w/ scartissue # doesn't restore normal organ function

Tissue Degeneration + Death Atrophy = Shrinkage of tissul through a loss in cell size * number Lifesults from normal aging (senile atrophy) + lack of use of an organ (disuse atrophy) Necrosis = premature, pathological tissue death due to trauma, toxins, infection, etc L'infarction = sudden tissue death, occurs from cut off 6 blood supply Gangrene = tissue necrosis resulting from infection or obstructed blood supply. Apoptosis = programmed all death